

Constrain the Unresolved Binary Distribution of Open Clusters in CMD

导师: 邵正义、陈力

2019.11.29 Daqing

Open cluster – NGC3532

Age = 300 Myr Distance = 485 pc [Fe/H] = 0.0 E(B-V) = 0.022

Why binary stars in open cluster are important?

- Constraints to star formation theory
 - Most stars form in open clusters or associations
 - And majority form in binary or multiple systems
- Tracers for dynamical evolution of stellar clusters
- Extra benefits: OCs have better measurement to age, metallicity, distance than field stars.

Unresolved Binary – Non co-evolution binary star

G

Challenges

Previous attempts are limited by small sample size

Poor membership determination ⇒ solution: Gaia

Lack of rigorous statistics ⇒ here we are!

How to constrain f_{bin}?

Conventional method:

Globular cluster

Open clusters limited member stars

We have better solution!

Mixture model

combine multiple components into a single probability density distribution

 $\Phi(\Theta) = (1 - f_{bin})\Phi_s + f_{bin}\Phi_b(\gamma_q)$

 Single stellar population + Binary population SSP: isochrone(Age, [Fe/H], Distance, Extiction) + MF BP: Binary fraction, Mass ratio distribution

2. Convolve observational error -> Probability density distribution

Mixture model

combine multiple components into a single probability density distribution

 $\Phi(\Theta) = (1 - f_{bin})\Phi_s + f_{bin}\Phi_b(\gamma_q)$

 Single stellar population + Binary population SSP: isochrone(Age, [Fe/H], Distance, Extiction) + MF BP: Binary fraction, Mass ratio distribution

2. Convolve observational error -> Probability density distribution

Age = 300 Myr Distance = 485 pc [Fe/H] = 0.0 E(B-V) = 0.022

Better Main Sequence Ridge Line by Gaussian Process

The inferred binary properties are sensitive to isochrone model.

Inconstancy between PARSEC and Gaia Solution: using main sequence ridge line from data itself

- Draw the ridge line by hand manually
- Gaussian process: objectively, fast, automatic (this work)

Algorithm: Robust Gaussian process based on iterative trimming → (Li, Li et al. 2019, in prep.)

Main Sequence Scatter

Degeneracy between scatter in main sequence and low massratio binary fraction The actual scatter is much larger than measurement error reported by Gaia due to

- Non-negligible intrinsic scatter
- Underestimated error by Gaia

Solution: fit scatter from data directly, and the model with q > 0.3

Main Sequence Scatter

Degeneracy between scatter in main sequence and low mass-ratio binary fraction.

The actual scatter is much larger than measurement error reported by Gaia due to

- Non-negligible intrinsic scatter
- Underestimated error by Gaia

Solution: fit scatter from data directly, and the model with q > 0.3

NGC3532

0.5 ~1.5 solar mass

NGC3532 - Mass dependence

Larger mass end: higher binary fraction, more low mass-ratio binaries

Binding energy of a binary system: $E_b \propto \frac{m_1^2 q}{a}$ \rightarrow larger primary mass will less affected by dynamical processing.

NGC3532 - Radial dependence

Inner region: lower binary fraction, but more high mass-ratio binaries

Consistent with dynamical evolution Three body interaction

→ replace light star in binary by more massive star

Larger sample: 30 Open clusters from Gaia

Fig. 2. Composite HRD for 32 open clusters, coloured according to log(age), using the extinction and distance moduli as determined from the *Gaia* data (Table 2).

Gaia 2018b

Current largest sample in similar studies ⇒ better statistics **Table 2.** Overview of reference values used in constructing the compos-
ite HRD for open clusters (Figure 2).*Gaia* Collaboration, 2018

	Cluster	DM	log(age)	[Fe/H]	E(B-V)	Memb
	Hyades	3.389	8.90	0.13	0.001	518
	Coma Ber	4.669	8.81	0.00	0.000	142
	Pleiades	5.667	8.04	-0.01	0.045	1323
	IC 2391	5.908	7.70	-0.01	0.030	328
	IC 2602	5.914	7.60	-0.02	0.031	490
	α Per	6.214	7.85	0.14	0.090	745
	Praesepe	6.350	8.85	0.16	0.027	949
	NGC 2451A	6.433	7.78	-0.08	0.000	397
	Blanco 1	6.876	8.06	0.03	0.010	493
	NGC 6475	7.234	8.54	0.02	0.049	952
	NGC 7092	7.390	8.54	0.00	0.010	255
	NGC 6774	7.455	9.30	0.16	0.080	154
	NGC 2232	7.575	7.70	0.11	0.031	242
	NGC 2547	7.980	7.60	-0.14	0.040	318
	NGC 2516	8.091	8.48	0.05	0.071	1591
ne	Trumpler 10	8.223	7.78	-0.12	0.056	400
	NGC 752	8.264	9.15	-0.03	0.040	337
	NGC 6405	8.320	7.90	0.07	0.139	538
	IC 4756	8.401	8.98	0.02	0.128	508
	NGC 3532	8.430	8.60	0.00	0.022	1702
	NGC 2422	8.436	8.11	0.09	0.090	564
	NGC 1039	8.552	8.40	0.02	0.077	501
	NGC 6281	8.638	8.48	0.06	0.130	584
	NGC 6793	8.894	8.78		0.272	266
	NGC 2548	9.451	8.74	0.08	0.020	366
	NGC 6025	9.513	8.18		0.170	443
	NGC 2682	9.726	9.54	0.03	0.037	1324
	IC 4651	9.889	9.30	0.12	0.040	885
	NGC 2323	10.010	8.30		0.105	679
	NGC 2447	10.088	8.74	-0.05	0.034	995
	NGC 2360	10.229	8.98	-0.03	0.090	813
	NGC 188	11.490	9.74	0.11	0.085	898

Results – 30 OC

0.4~1.0 solar mass

It is the homogeneous determinations of f_{bin} and γ_q of unsolved solar-type binaries in CMD, with the largest OC sample up to now.

Take home message

The mixture model is strict and accurate to infer the OC binary properties.

- NGC 3532: inner region and lower primary mass end shows smaller $f_{\rm bin}$ and higher γ_q
 - Indication of more fierce dynamical encounters.
 - Larger primary mass less affected by dynamical processing.
- Largest sample up to now: 30 OCs of age from 30 Myr to 5 Gyr
 - Binary fraction (q>0.3) f_{bin} : 0.21 ± 0.05
 - weak age dependence, requires further investigation
 - Mass ratio power-law index γ_q : 1.01 ± 1.51

- Byproducts:

- Main sequence ridge line:
 - Calibration to star model or Gaia photometry?
- Scatter in main sequence
 - Intrinsic or underestimated Gaia photometric error.

Thank you

在恒星社区里,有伴侣的恒星(双星)占20%,单身率80%。 动力学的扰动--星团中心星数更密集(诱惑更多): 1.胖子的婚姻更加稳定 2.质量相差的大的婚姻: 胖-瘦 -->容易有第三者-->胖-胖

 $E_b \propto \frac{m_1^2 q}{m_1^2 q}$